Abstract

Nonhuman primates express varying responses to Mycobacterium tuberculosis: New World monkeys appear to be resistant to tuberculosis (TB) while Old World monkeys seem to be particularly susceptible. The aim of this study was to elucidate the presence of the regulatory guanine-thymine (GT) repeat polymorphisms in intron 2 of Toll-like receptor 2 (TLR2) associated with the development of TB in humans and to determine any variations in these microsatellite polymorphisms in primates. We sequenced the region encompassing the regulatory GT repeat microsatellites in intron 2 of TLR2 in 12 different nonhuman primates using polymerase chain reaction amplification, TA cloning, and automatic sequencing. The nonhuman primates included for this study were as follows: chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), Celebes ape (Macaca nigra), rhesus monkey (Macaca mulatta), pigtail macaque (Macaca nemestrina), patas monkey (Erythrocebus patas), spider monkey (Ateles geoffroyi), Woolly monkey (Lagothrix lagotricha), tamarin (Saguinus labiatus), and ring-tailed lemur (Lemur catta). Nucleotide sequences encompassing the regulatory GT repeat region are similar across species and are completely conserved in great apes. However, Old World monkeys lack GT repeats altogether, while New World monkeys and ring-tailed lemurs have much more complex structures around the position of the repeats. In conclusion, the genetic structures encompassing the regulatory GT repeats in intron 2 of human TLR2 are similar among nonhuman primates. The sequence is most conserved in New World monkeys and less in Old World monkeys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call