Abstract

The early evolution of an initially columnar vortex normal to a solid wall was examined. The vortex was generated by a pair of flaps in a water tank. Detrimental effects from the wall during the vortex generation were avoided by producing the vortex normal to a free surface and subsequently bringing a horizontal plate into contact with the surface. Digital particle image velocimetry (DPIV) measurements of the velocity and vorticity, together with laser induced fluorescence (LIF) visualizations, in a meridional plane revealed a toroidal structure with the appearance of an axisymmetric vortex breakdown bubble. Agreement was found between the measurements and numerical simulations of the axisymmetric Navier–Stokes equations. The results show that the flow in the effusive corner region is dominated by a Bodewadt-type spatially oscillatory boundary layer within the core region and a potential-like vortex boundary layer at large radii. The toroidal structure results from the interaction between these two boundary layers, leading to the roll up of a dominant shear layer within the Bodewadt structure, and does not develop from the columnar vortex itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call