Abstract

Large eddy simulations are used to examine the evolution of a shear layer in a thermocline with non-uniform density stratification. Unlike previous studies, the density in the present study is continuously stratified and has stratification in the upper half different from the lower half of the shear layer. The stratification in the upper half is fixed at Ju = 0.05, while the stratification in the lower half is increased to Jd = 0.05, 0.15, 0.25 and 0.35, leading to a progressively stronger asymmetry of the Rig profile in the four cases. Here, J is the bulk Richardson number and Rig is the gradient Richardson number. The type of shear instability and the properties of the ensuing turbulence are found to depend strongly on the degree of asymmetry in stratification. The shear instability changes from a Kelvin–Helmholtz (KH) mode at Jd = 0.05 to a Holmboe (H) mode at Jd = 0.35 and exhibits characteristics of both KH and H modes at intermediate values of Jd. Differences in the evolution among the cases are quantified using density visualisations and statistics such as mean shear, mean stratification and turbulent kinetic energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.