Abstract

In plants, mitochondrial sequence tandem repeats (STRs) have been associated with intragenomic recombination, a process held responsible for evolutionary outcomes such as gene regulation or cytoplasmic male-sterility. However, no link has been established between the recurrent accumulation of STRs and increased mutation rates in specific regions of the plant mtDNA genome. Herein, we surveyed this possibility by comparing, in a phylogenetic context, the variation of a STR-rich mitochondrial intron (nad5-4) with eleven mtDNA genes devoid of STRs within Abies (Pinaceae) and its related genera. This intron has been accumulating repeated stretches, generated by at least three-independent insertions, before the split of the two Pinaceae subfamilies, Abietoideae and Pinoideae. The last of these insertions occurred before the divergence of Abies and produced, exclusively within this genus, a tenfold increase of both the indel and substitution rates in the STR hotspot of the intron. The regions flanking the STRs harbored mutation rates as low as those estimated in mitochondrial genes devoid of repeated stretches. Further searches in complete plant mtDNA genomes, and previous studies reporting polymorphic mtSTRs, revealed that repeated stretches are common in all sorts of plants, but their accumulation in STR hotspots appears to be taxa specific. Our study suggests a new mutagenic role for repeated sequences in the plant mtDNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.