Abstract

A broad range of mortality patterns has been documented across species, some even including decreasing mortality over age. Whether there exist a common denominator to explain both similarities and differences in these mortality patterns remains an open question. The disposable soma theory, an evolutionary theory of aging, proposes that universal intracellular trade-offs between maintenance/lifespan and reproduction would drive aging across species. The disposable soma theory has provided numerous insights concerning aging processes in single individuals. Yet, which specific population mortality patterns it can lead to is still largely unexplored. In this article, we propose a model exploring the mortality patterns which emerge from an evolutionary process including only the disposable soma theory core principles. We adapt a well-known model of genomic evolution to show that mortality curves producing a kink or mid-life plateaus derive from a common minimal evolutionary framework. These mortality shapes qualitatively correspond to those of Drosophila melanogaster, Caenorhabditis elegans, medflies, yeasts and humans. Species evolved in silico especially differ in their population diversity of maintenance strategies, which itself emerges as an adaptation to the environment over generations. Based on this integrative framework, we also derive predictions and interpretations concerning the effects of diet changes and heat-shock treatments on mortality patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.