Abstract

A basic assumption of the Darwinian theory of evolution is that heritable variation arises randomly. In this context, randomness means that mutations arise irrespective of the current adaptive needs imposed by the environment. It is broadly accepted, however, that phenotypic variation is not uniformly distributed among phenotypic traits, some traits tend to covary, while others vary independently, and again others barely vary at all. Furthermore, it is well established that patterns of trait variation differ among species. Specifically, traits that serve different functions tend to be less correlated, as for instance forelimbs and hind limbs in bats and humans, compared with the limbs of quadrupedal mammals. Recently, a novel class of genetic elements has been identified in mouse gene-mapping studies that modify correlations among quantitative traits. These loci are called relationship loci, or relationship Quantitative Trait Loci (rQTL), and affect trait correlations by changing the expression of the existing genetic variation through gene interaction. Here, we present a population genetic model of how natural selection acts on rQTL. Contrary to the usual neo-Darwinian theory, in this model, new heritable phenotypic variation is produced along the selected dimension in response to directional selection. The results predict that selection on rQTL leads to higher correlations among traits that are simultaneously under directional selection. On the other hand, traits that are not simultaneously under directional selection are predicted to evolve lower correlations. These results and the previously demonstrated existence of rQTL variation, show a mechanism by which natural selection can directly enhance the evolvability of complex organisms along lines of adaptive change.

Highlights

  • It has long been recognized that phenotypic variation is highly structured [1 –4]

  • We show only symmetrical cases, where the two relationship Quantitative Trait Loci (rQTL) genotype classes differ in covariance while the genetic variances are held equal, and where the selection on the two traits is either equal or of equal magnitude but different signs, or where only one trait is under directional selection and the other under stabilizing selection

  • Modelling the evolution of variational properties requires modelling multi-loci dynamics with gene interaction and multiple phenotypic characters under directional selection including the effect of linkage disequilibrium (LD)

Read more

Summary

Introduction

It has long been recognized that phenotypic variation is highly structured [1 –4]. The best documented pattern is called morphological integration as identified by Olson & Miller [5], where functionally related traits tend to be more strongly correlated than functionally less-related traits. We present a phenomenological model of selection on these neutral rQTL, i.e. genes that change the variance and covariance among traits but do not directly affect the mean phenotype (see scheme in figure 1b). 2. THE MODEL To investigate how directional selection affects rQTL variation, we construct a simple haploid model of a population with two alternative genotypes at an rQT locus.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call