Abstract
The evolution of the structure of Pt–Sn/Al2O3 catalysts and their catalytic properties in the reaction of the reductive deoxygenation of rapeseed oil fatty acid triglycerides (FATGs) have been studied. The catalysts were prepared by deposition from an organic solution of a mixture of platinum and tin compounds, as well as a heterometallic (PPh4)3[Pt(SnCl3)5] complex, in which platinum and tin atoms are linked by a metal–metal bond. It has been shown that the use of the heterometallic complex as a precursor with a tin to platinum molar ratio of 5 results in the formation of clusters of nanosized tin (2+; 4+) oxides and particles of a metastable PtSn3 ± δ alloy on the surface of the catalyst after reductive activation. In the presence of this catalyst, the exhaustive conversion of the feed FATGs and the selectivity for hydrocarbons above 98% have been achieved. The gaseous products CO, CO2, and CH4 are formed in trace quantities. The results show that the deoxygenation occurs not via the known decarboxylation and decarbonylation route, but also through the step of the selective reduction of oxygen and almost complete suppression of cracking of the organic moieties of FATGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.