Abstract

The Drosophila dunni subgroup displays a nearly perfect latitudinal cline in abdominal pigmentation that likely resulted from selective forces acting in the habitat of each species during speciation. Here we characterize the nature of this clinal variation by developing a quantitative measure to assess variation in abdominal pigmentation within and between the D. dunni subgroup species. Using discriminant analysis, we confirm the existence of a cline and find that our quantitative measure of pigmentation distinguishes each of the species with singular efficacy. We then combine our quantitative phenotypic analysis of pigmentation with the phylogeny of the D. dunni subgroup species and map the species relationships into the three-dimensional morphological space defined by our pigmentation measures. In this manner, we can visualize how the species have traversed the morphological pigmentation space during the course of speciation. Our analysis reveals that natural selection has caused overall intensity of pigmentation among the northernmost species of the cline to converge. Along with this convergence in phenotype has been a relaxation in expression of sexual dimorphism in these species, indicating a possible shift in the relative intensity of natural and sexual selection. Our analysis indicates an accelerated rate of change in pigmentation for the darkest species in addition to this species evolving a novel abdominal pigmentation trait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call