Abstract
The results of an experimental, analytical, and numerical study of the cylindrical shock wave generated by the underwater electrical explosion of copper and aluminum wires are reported. Experiments were conducted using a microsecond timescale generator delivering ∼180 kA pulses with a 1.2 μs rise time. Shadow streak images were used to study the radial expansion of the exploding wire and the generated shock wave. It was found that the shock wave expansion velocity decreases to the velocity of sound in two stages: a fast stage and then a gradual stage. The fast stage occurs during ∼1.5 μs after the maximum of the resistive voltage is reached, and then, a gradual decrease occurs during several tens of microseconds. It was shown that the duration of the fast stage corresponds to the period of time when the main energy deposition into the wire occurs. Hydrodynamic simulations show that the fast decrease in the shock velocity is related to the evolution of the exploded wire's subsonic expansion, which leads to time/spatial compression of the adjacent water layer. For the gradual decrease stage of the shock wave velocity, we developed a simplified model, which considers uniform water density between the wire boundary and the shock wave front. The results of this model agree satisfactorily with the experimentally obtained shock wave trajectory and radial expansion of the wire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.