Abstract

The shikimate pathway synthesizes aromatic amino acids essential for protein biosynthesis. Shikimate dehydrogenase (SDH) is a central enzyme of this primary metabolic pathway, producing shikimate. The structurally similar quinate is a secondary metabolite synthesized by quinate dehydrogenase (QDH). SDH and QDH belong to the same gene family, which diverged into two phylogenetic clades after a defining gene duplication just prior to the angiosperm/gymnosperm split. Non-seed plants that diverged before this duplication harbour only a single gene of this family. Extant representatives from the chlorophytes (Chlamydomonas reinhardtii), bryophytes (Physcomitrella patens) and lycophytes (Selaginella moellendorfii) encoded almost exclusively SDH activity invitro. A reconstructed ancestral sequence representing the node just prior to the gene duplication also encoded SDH activity. Quinate dehydrogenase activity was gained only in seed plants following gene duplication. Quinate dehydrogenases of gymnosperms, represented here by Pinus taeda, may be reminiscent of an evolutionary intermediate since they encode equal SDH and QDH activities. The second copy in P.taeda maintained specificity for shikimate similar to the activity found in the angiosperm SDH sister clade. The codon for a tyrosine residue within the active site displayed a signature of positive selection at the node defining the QDH clade, where it changed to a glycine. Replacing the tyrosine with a glycine in a highly shikimate-specific angiosperm SDH was sufficient to gain some QDH function. Thus, very few mutations were necessary to facilitate the evolution of QDH genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.