Abstract

The evolution a network of vortex loops due to the fusion and breakdown in the turbulent superfluid helium is studied. We perform investigation on the base of the "rate equation" for the distribution function $n(l)$ of number of loops in space of their length $l$. There are two mechanisms for change of quantity $n(l)$. Firstly, the function changes due to deterministic process of mutual friction, when the length grows or decreases depending on orientation. Secondly, the change of $n(l)$ occurs due to random events when the loop crosses itself breaking down into two daughter or two loops collide merging into one larger loop. Accordingly the "rate equation" includes the "collision" term collecting random processes of fusion and breakdown and the deterministic term. Assuming, further, that processes of random colliding are fastest we are in position to study more slow processes related to deterministic term. In this way we study the evolution of full length of vortex loops per unit volume-so called vortex line density ${\cal L}(t)$. It is shown this evolution to obey the famous Vinen equation. In conclusion we discuss properties of the Vinen equation from the point of view of the developed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.