Abstract

We set up and analyse a model for the non-equilibrium evolution of a network of cosmic strings initially containing only loops and no infinite strings. Due to this particular initial condition, our analytical approach differs significantly from existing ones. We describe the average properties of the network in terms of the distribution function n(l,t) dl, the average number of loops per unit volume with physical length between l and l + dl at time t. The dynamical processes which change the length of loops are then estimated and an equation, which we call the `rate equation', is derived for (dn/dt). In a non-expanding universe, the loops should reach the equilibrium distribution predicted by string statistical mechanics. Analysis of the rate equation gives results consistent with this. We then study the rate equation in an expanding universe and suggest that three different final states are possible for the evolving loop network, each of which may well be realised for some initial conditions. If the initial energy density in loops in the radiation era is low, then the loops rapidly disappear. For large initial energy densities, we expect that either infinite strings are formed or that the loops tend towards a scaling solution in the radiation era and then rapidly disappear in the matter era. Such a scenario may be relevant given recent work highlighting the problems with structure formation from the standard cosmic string scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call