Abstract

It has been shown that the topological characterization of an equivariant system should preferably be achieved by working in a fundamental domain generated by the symmetry properties appearing in the phase space. In this paper, we discuss the case when the equivariance of the studied system is taken into account to study the evolution of the population of periodic orbits when a control parameter is varied. The Burke - Shaw system is considered here as an example. It is shown that the equivariance of this system may be used to reduce the multimodal first-return map in a Poincare section to a unimodal map. A relationship between four-symbol sequences and two-symbol sequences is given. The non-trivial evolution of the orbit spectrum of a multimodal map is then predicted from the much simpler unimodal map to which the multimodal map reduces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.