Abstract

The effect of a shear-thinning fluid governed by a power-law model on the evolution of a hairpin vortex in a wall-bounded flow was studied by means of direct numerical simulation. With a fixed Reynolds number and hairpin vortex strength, the effect of shear-thinning on vortex evolution could be isolated. The primary observation is that very early in time shear-thinning has the effect of reducing the production of vortex kinetic energy and dramatically increasing viscous dissipation. This leads to a delay in the transition of the flow to a turbulent state. Three-dimensional flow visualizations reveal that the increased dissipation is associated with an instability in which the hairpin vortex is broken down into small-scale structures. It is suggested that the finite amplitude of the hairpin creates a lowering of viscosity near the hairpin vortex core which leads to this instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.