Abstract

AbstractAccretionary processes at mid‐ocean ridge segments with low magma input have seldom been investigated over the long term. The evolution of such magma‐starved segments over time is still largely unknown. We present a study on the structure and evolution of the southernmost intra‐transform ridge segment of the St. Paul Transform Fault System in the Equatorial Mid‐Atlantic Ridge, based on new bathymetry, gravity, and rock sampling data. We show that this area evolves differently from previously described tectonics along ridge segments of similar spreading rate. On the flanks of the axial ridge segment, we observe a succession of structures exhumed by detachment faulting, evolving from east‐facing, long‐lived, corrugated oceanic core complexes (∼6 Ma ago), to short‐lived detachment faults exposing lower crust and mantle rocks and facing alternatively east and west in the more recent part of the segment. The oldest detachment faults have been repeatedly split and partially transferred to the opposite flank through the formation of new detachments into the footwall. The terminations of three old, east‐facing detachments are observed on the east flank of the segment. The westward relocations of the plate boundary appear to compensate for the asymmetry of accretion through detachment faulting, overall creating the same amount of lithosphere on both flanks of the ridge. We interpret the observed changes in the time of the accretionary processes to reflect a decrease of the melt supply over the last ∼6 Myr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call