Abstract
In this study, we report a biological temperature-sensing electrical regulator in the cytochrome c oxidase of the Devil Worm, Halicephalobus mephisto. This extremophile metazoan was isolated 1.3 km underground in a South African goldmine, where it adapted to heat and potentially to hypoxia, making its mitochondrial sequence a likely target of adaptational change. We obtained the complete mitochondrial genome sequence of this organism and show through dN/dS analysis evidence of positive selection in H. mephisto cytochrome c oxidase subunits. Seventeen of these positively selected amino acid substitutions were located in proximity to the H- and K-pathway proton channels of the complex. Surprisingly, the H. mephisto cytochrome c oxidase completely shuts down at low temperatures (20 °C), leading to a 4.8-fold reduction in the transmembrane proton gradient (ΔΨm) compared to optimal temperature (37 °C). Direct measurement of oxygen consumption found a corresponding 4.6-fold drop at 20 °C compared to 37 °C. Correspondingly, the lifecycle of H. mephisto takes four times longer at low temperature than at higher. This elegant evolutionary adaptation creates a finely-tuned mitochondrial temperature sensor, allowing this ectothermic organism to maximize its reproductive success across varying environmental temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.