Abstract

About one-quarter of the extrasolar giant planets discovered so far have orbital distances smaller than 0.1 AU. These 51 Peg b-like planets can now be directly characterized, as shown by the planet transiting in front the star HD 209458. We review the processes that affect their evolution. We apply our work to the case of HD 209458b, whose radius has been recently measured. We argue that its radius can be reproduced only when the deep atmosphere is assumed to be unrealistically hot. When using more realistic atmospheric temperatures, an energy source appears to be missing in order to explain HD 209458b's large size. The most likely source of energy available is not in the planet's spin or orbit, but in the intense radiation received from the parent star. We show that the radius of HD 209458b can be reproduced if a small fraction (∼1%) of the stellar flux is transformed into kinetic energy in the planetary atmosphere and subsequently converted to thermal energy by dynamical processes at pressures of tens of bars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.