Abstract

Our aim was to analyse the evolution of HIV-1 2-long terminal repeat (2-LTR) circular DNA in vitro and ex vivo in the presence of raltegravir. Twenty-five patients starting a raltegravir-based regimen were included. Total HIV-1 DNA and 2-LTR DNA were quantified at baseline and in follow-up samples up to month 12. The effect of raltegravir on the formation of 2-LTR circles was evaluated in HeLa P4 cells. The effect of raltegravir was also investigated by sequence analysis of the 2-LTR circle junctions. Among 21 patients with undetectable 2-LTR DNA at baseline, 7 had detectable 2-LTR DNA during the follow-up. Three of four patients with detectable 2-LTR DNA at baseline had undetectable 2-LTR DNA during the follow-up (P = 0.27). The mean 2-LTR level increased significantly (+0.07 log(10)/month, P = 0.02) in raltegravir-treated patients, and a 2-LTR increase was also observed in raltegravir-treated HeLa P4 cells, with a peak at 3 days post-infection. 2-LTR DNA showed a high prevalence of deletions ex vivo (64.5%) and in vitro (50%) in the presence of raltegravir, which was not statistically different from the prevalence in untreated patients or cells. In antiretroviral-experienced patients receiving raltegravir, 2-LTR DNA increased while total HIV-1 DNA decreased over time. The frequent rearrangements found in 2-LTR sequences warrant further investigations to determine the dynamics of evolution of unintegrated HIV-1 DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call