Abstract

Fe-based zeolites are known for desired high-temperature activity in the selective catalytic reduction of NOx by NH3, and species-performance relationships over Fe-ZSM-5 were systematically investigated in this study. Via activity tests, characterization and TOF calculation, it was found that both the relative amount and the real content of active Fe species played vital roles in the catalytic activity. The weakened high-temperature acid sites and stronger NH3 oxidation caused by oligomeric Fe and FexOy species could account for the decreased high-temperature activity over Fe-ZSM-5 with a high Fe loading. N2O formation via nitrate decomposition was barely found over Fe-ZSM-5 with Fe content of 1.0 wt%, the “L-H” and “E-R” pathway could coexist in the SCR reaction as suggested by DRIFT studies. DFT calculation showed that [Fe-NO2]-1 was the most easily generated and the formation of [Fe-NO2]-1/[FeO-NO] was the rate limiting step in the calculated reaction pathways of NO2 and NH3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.