Abstract

It has been argued that any evolution law taking pure states to mixed states in quantum field theory necessarily gives rise to violations of either causality or energy-momentum conservation, in such a way as to have unacceptable consequences for ordinary laboratory physics. We show here that this is not the case by giving a simple class of examples of Markovian evolution laws where rapid evolution from pure states to mixed states occurs for a wide class of states with appropriate properties at the ``Planck scale", suitable locality and causality properties hold for all states, and the deviations from ordinary dynamics (and, in particular, violations of energy-momentum conservation) are unobservably small for all states which one could expect to produce in a laboratory. In addition, we argue (via consideration of other, non-Markovian models) that conservation of energy and momentum for all states is not fundamentally incompatible with causality in dynamical models in which pure states evolve to mixed states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.