Abstract
The twist three contributions to the Q 2 -evolution of the spin-dependent structure function g 2 ( x ) are considered in the non-local operator product approach. Starting from the perturbative expansion of the T-product of two electromagnetic currents, we introduce the nonlocal light-cone expansion proved by Anikin and Zavialov and determine the physical relevant set of light-ray operators of twist three. Using the equations of motion we show the equivalence of these operators to the Shuryak-Vainshtein operators plus the mass operator, and we determine their evolution kernels using the light-cone gauge with the Leibbrandt-Mandelstam prescription. The result of Balitsky and Braun for the twist three evolution kernel (nonsinglet case) is confirmed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.