Abstract

Innate immune signaling pathways comprise multiple proteins that promote inflammation. This multistep means of information transfer suggests that complexity is a prerequisite for pathway design. Herein, we test this hypothesis by studying caspases that regulate inflammasome-dependent inflammation. Several caspases differ in their ability to recognize bacterial LPS and cleave interleukin-1β (IL-1β). No caspase is known to contain both activities, yet distinct caspases with complementary activities bookend an LPS-induced pathway to IL-1β cleavage. Using caspase-1/4 hybrid proteins present in canines as a guide, we identified molecular determinants of IL-1β cleavage specificity within caspase-1. This knowledge enabled the redesign of human caspase-4 to operate as a one-protein signaling pathway, which intrinsically links LPS detection to IL-1β cleavage and release, independent of inflammasomes. We identified caspase-4 homologues in multiple carnivorans which display the activities of redesigned human caspase-4. These findings illustrate natural signaling pathway diversity and highlight how multistep innate immune pathways can be condensed into a single protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.