Abstract

Modulation of interactome networks, essentially protein-protein interactions (PPIs), might represent valuable therapeutic approaches to different pathological conditions. Since a high percentage of PPIs are mediated by α-helical structures at the interacting surface, the development of compounds able to reproduce the amino acid side-chain organization of α-helices (e.g. stabilized α-helix peptides and β-derivatives, proteomimetics, and α-helix small-molecule mimetics) focuses the attention of different research groups. This appraisal describes the recent progress in the non-peptide α-helix mimetics field, which has evolved from single-face to multi-face reproducing compounds and from oligomeric to monomeric scaffolds able to bear different substituents in similar spatial dispositions as the side-chains in canonical helices. Grouped by chemical structures, the review contemplates terphenyl-like molecules, oligobenzamides and heterocyclic analogues, benzamide-amino acid conjugates and non-oligomeric small-molecules mimetics, among others, and their effectiveness to stabilize/disrupt therapeutically relevant PPIs. The X-ray structures of a couple of oligomeric peptidomimetics and of some small-molecules complexed with the MDM2 protein, as well as the state of the art on their development in clinical trials, are also remarked. The discovery of a continuously increasing number of new disease-relevant PPIs could offer future opportunities for these and other forthcoming α-helix mimetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call