Abstract

We describe a physical simulation of natural selection in a population of legorgs, six-segment model organisms. Legorg morphology is genetically specified by five alleles on each segment. Legorgs show a simple form of motility that could evolve in originally sessile animals. This motility, the ability to move horizontally on a smooth surface, depends on the morphology and interaction of the six segments that produce different patterns of locomotion. Legorgs are selected for motility and reproduce in proportion to fitness. After just five generations, the average population motility increases 2.5 times. Additionally, we describe a slightly less time-consuming simulation of legorg evolution, where fitness is assigned by comparison with a template. The calculation of gene pools is precisely the same as in the previous simulation and produces very robust increases in fitness during five generations. The simulation is designed as a classroom experiment to explore the mechanism of natural selection. A test of its learning efficiency by evaluating the students’ conception of central aspects of evolutionary theory before and after showed a significant improvement. The surprising power of natural selection in this very simple physical system may also be exploited in more advanced experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.