Abstract

Wolbachia are the world's most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due, in part, to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate with uninfected females but not infected females. Under the Two-by-One genetic model of CI, males expressing the two phage WO proteins CifA and CifB cause CI, and females expressing CifA rescue CI. While each protein is predicted to harbor three functional domains, there is no knowledge on how sites across these Cif domains, rather than in any one particular domain, contribute to CI and rescue. Here, we use evolution-guided, substitution mutagenesis of conserved amino acids across the Cif proteins, coupled with transgenic expression in uninfected Drosophila melanogaster, to determine the functional impacts of conserved residues evolving mostly under purifying selection. We report that amino acids in CifA's N-terminal unannotated region and annotated catalase-related domain are important for both complete CI and rescue, whereas C-terminal residues in CifA's putative domain of unknown function are solely important for CI. Moreover, conserved CifB amino acids in the predicted nucleases, peptidase, and unannotated regions are essential for CI. Taken together, these findings indicate that (i) all CifA amino acids determined to be crucial in rescue are correspondingly crucial in CI, (ii) an additional set of CifA amino acids are uniquely important in CI, and (iii) CifB amino acids across the protein, rather than in one particular domain, are all crucial for CI. We discuss how these findings advance an expanded view of Cif protein evolution and function, inform the mechanistic and biochemical bases of Cif-induced CI/rescue, and continue to substantiate the Two-by-One genetic model of CI.

Highlights

  • Wolbachia are maternally-inherited, intracellular α-Proteobacteria that occur in 40–65% of all arthropod species [1,2,3,4]

  • Wolbachia are maternally-transmitted, intracellular bacteria that occur in approximately half of arthropod species worldwide

  • CifA and CifB, underlie the genetic basis of cytoplasmic incompatibility (CI) and rescue, but how amino acid sites across these proteins contribute to CI and/or rescue remain unknown

Read more

Summary

Introduction

Wolbachia are maternally-inherited, intracellular α-Proteobacteria that occur in 40–65% of all arthropod species [1,2,3,4]. CI can act as a form of reproductive isolation between populations of different infection states [10,11,12,13]. This drive system has brought Wolbachia to the forefront of vector control efforts to combat Zika and dengue viruses because wMel Wolbachia from Drosophila melanogaster flies confer resistance to RNA arboviruses when transinfected into Aedes mosquitoes [14,15,16,17,18,19,20]. WMel-induced CI is the focus of this study

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call