Abstract

We study the evolution from few- to many-body physics of fermionic systems in one spatial dimension with attractive pairwise interactions. We determine the detailed form of the momentum distribution, the structure of the one-body density matrix, and the pairing properties encoded in the two-body density matrix. From the low- and high-momentum scaling behavior of the single-particle momentum distribution we estimate the speed of sound and Tan's contact, respectively. Both quantities are found to be in agreement with previous calculations. Based on our calculations of the one-body density matrices, we also present results for the particle-partition entanglement entropy, for which we find a logarithmic dependence on the total particle number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.