Abstract

Fulvic acid (FA) and humic acid (HA) are common polyacids in nature. However, the evolutionary process of their basic and advanced structures is still unclear. FA and HA were separated into five molecular weight components to investigate the process of evolution from small to large molecules. The primary structure analysis showed that FA were rich in CN, COOH and OH content, while HA were rich in (CH2)n, NH2 and CC. Moreover, with the molecular weight increasing, the structures could complement each other to maintain the hydrophilic or hydrophobic balance. The 2D-COS spectroscopy demonstrated that during the growth of FA, COOH, NH2 and OH firstly respond. On the other hand, during the growth of HA, NH2 and (CH2)n firstly respond. In addition, advanced structure of FA was affected by intramolecular hydrogen bonds and π − π interaction. HA was affected by hydrophobic interactions due to the abundance of hydrophobic groups, primarily (CH2)n and benzene rings. 3D conformational fitting and particle size characterization confirmed that the interaction forces determine that FA and HA become tightly and loosely molecules respectively. This study is to further explore the geochemical formation and evolution process of FA and HA molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.