Abstract
In this paper, we prove maximal $L^p$-regularity for a system of parabolic PDEs, where the elliptic operator $A$ has coefficients which depend on time in a measurable way and are continuous in the space variable. The proof is based on operator-theoretic methods and one of the main ingredients in the proof is the construction of an evolution family on weighted $L^q$-spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.