Abstract

Global existence of solutions for a class of second-order evolution equations with damping is shown by proving convergence of a full discretization. The discretization combines a fully implicit time stepping with a Galerkin scheme. The operator acting on the zero-order term is assumed to be a potential operator where the potential may be nonconvex. A linear, symmetric operator is assumed to be acting on the first-order term. Applications arise in nonlinear viscoelasticity and elastodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.