Abstract
The spectrum profile that emerges in molecular spectroscopy and atmospheric radiative transfer as the combined effect of Doppler and pressure broadenings is known as the Voigt profile function. Because of its convolution integral representation, the Voigt profile can be interpreted as the probability density function of the sum of two independent random variables with Gaussian density (due to the Doppler effect) and Lorentzian density (due to the pressure effect). Since these densities belong to the class of symmetric Lévy stable distributions, a probabilistic generalization is proposed as the convolution of two arbitrary symmetric Lévy densities. We study the case when the widths of the distributions considered depend on a scale factor τ that is representative of spatial inhomogeneity or temporal non-stationarity. The evolution equations for this probabilistic generalization of the Voigt function are here introduced and interpreted as generalized diffusion equations containing two Riesz space-fractional derivatives, thus classified as space-fractional diffusion equations of double order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.