Abstract

Model studies are presented for nanopore dynamics of cells subjected to high-intensity voltage pulsing. The role of concentration differences leading to osmotic flows, cell-size modulation, and resulting stresses on the plasma membrane are all comprehensively probed. Our results show that the life span of pores can either be short or very long depending on various conditions. Our model results are consistent with recent experimental observations and suggest that nanopores with a larger radius would tend to evolve into long-lived metastable entities. This has obvious implications to both drug delivery and gene transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call