Abstract

Large-scale mining fractures resulting from repeated mining are a major cause of surface water loss in the northern Shaanxi mining area, China. Accurately detecting the evolution of mining-induced fractures is crucial for addressing the fragile ecological environment and ensuring coalmine production safety in this area. This study focuses on the close-multi coal seams mining at the Ningtiaota coalmine, northern Shaanxi, China, investigating the failure types of overburden rock, the evolution of mining-induced fractures, and the height of fracture zones. The results indicate that the failure type of overburden strata transforms from a “trapezoid shape” to an “overlapping trapezoid shape”, with the fracture zone height extending from 64.5 m to 158.5 m due to the superposition of secondary mining. Furthermore, the evolution characteristics of mining-induced fractures shift from a “three-stage and three-step” model to a “three-stage and two-step” model. A characterization model of overburden deformation based on optical fiber sensing is proposed to effectively describe the strain distribution characteristics of overburden failure. This model reveals the spatiotemporal evolution of overburden deformation from the perspective of “horizontal three areas and vertical three zones”, enabling real-time characterization of overburden deformation. The results demonstrate a relative error of less than 5.0 % between optical fiber monitoring and other methods, excluding theoretical calculations. This study offers a technical solution for detecting mining-induced fractures in the northern Shaanxi mining area and holds significant implications for broader studies of overburden deformation and failure under repeated mining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.