Abstract

Combined with on-site water quality investigation and nirS gene high-throughput sequencing technology, the evolution characteristics and influencing factors of the denitrification community during the formation of spring thermal stratification in Zhoucun Reservoir were analyzed. The results show that the water body stratification gradually formed during this period, and the environmental factors (NO3-, NH4+, TN, TOC, BOD5, permanganate index, TP, Fe, and Mn) showed significant differences (P<0.01); nitrogen showed a significant decline process. High-throughput sequencing provided 8703 OTU, which were divided into three phyla and eight major genera, proteobacteria accounted for the largest proportion with 45.27%-78.90%. The α-diversity except for the Simpson index showed that the ACE index, Chao index, Shannon index, and coverage index showed significant differences (P<0.05). The principal coordinate analysis showed the denitrification community exhibited significant differences in the spring, which was consistent with adonis result (P<0.001); network analysis (OTU-OTU) showed that there were seven main modules in this period, including 316 edges of 131 nodes, and the proportion of positive correlation edges was 95.25%. Network analysis (OTU-environmental factors) showed that there were five modules in this period, including 329 edges of 140 nodes, and the proportion of positive correlation edges was 51.98%. Sixty-two indicator OTU and 28 keystone OTU were obtained based on the indicator OTU analysis and network analysis. RDA and mantel test analysis indicated that T, DO, NO3-, TN, TOC, BOD5, and TP were the main environmental factors driving the denitrifying bacterial community structure and the key denitrifying OTU evolution in spring. Our results will provide technical support for the migration and transformation of nitrogen in reservoir water and pollution control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.