Abstract
With the genome sequences of numerous species at hand, we have the opportunity to discover how evolution has acted at each and every nucleotide in our genome. To this end, we must identify sets of nucleotides that have descended from a common ancestral nucleotide. The problem of identifying evolutionary-related nucleotides is that of sequence alignment. When the sequences under consideration are entire genomes, we have the problem of multiple whole-genome alignment. In this paper, we first state a series of definitions for homology and its subrelations between single nucleotides. Within this framework, we review the current methods available for the alignment of multiple large genomes. We then describe a subset of tools that make biological inferences from multiple whole-genome alignments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.