Abstract

The creeping-flow theory describing evolution and steady-state shape of two-dimensional ionic-conductor drops under the action of surface tension and the subcritical (in terms of the electric Bond number) electric field imposed in the substrate plane is developed. On the other hand, the experimental data are acquired for drops impacted or softly deposited on dielectric surfaces of different wettability and subjected to an in-plane subcritical electric field. Even though the experimental situation involves viscous friction of drops with the substrates and wettability-driven motion of the contact line, the comparison to the theory reveals that it can accurately describe the steady-state drop shape on a non-wettable substrate. In the latter case, the drop is sufficiently raised above the substrate, which diminishes the three-dimensional effects, making the two-dimensional description (lacking the no-slip condition at the substrate and wettability-driven motion of the contact line) relevant. Accordingly, it is demonstrated how the subcritical electric field deforms the initially circular drops until an elongated steady-state configuration is reached. In particular, the surface tension tends to round off the non-circular drops stretched by the electric Maxwell stresses imposed by the electrodes. A more pronounced substrate wettability leads to more elongated steady-state configurations observed experimentally than those predicted by the two-dimensional theory. The latter cases reveal significant three-dimensional effects in the electrically driven drop stretching. In the supercritical electric fields (corresponding to the supercritical electric Bond numbers), the electrical stretching of drops predicted by the present linearized two-dimensional theory results in splitting into two separate droplets. This scenario is corroborated by the predictions of the fully nonlinear results for similar electrically stretched bubbles in the creeping-flow regime available in the literature as well as by the present experimental results on a substrate with slip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call