Abstract
AbstractInter‐generational temporal variability of the environment is important in the evolution and adaptation of phenotypic traits. We discuss a population‐dynamic approach which plays a central role in the analysis of evolutionary processes. The basic principle is that the phenotypes with the greatest long‐term average growth rate will dominate the entire population. The calculation of longterm average growth rates for populations under temporal stochasticity can be highly cumbersome. However, for a discrete non‐overlapping population, it is identical to the geometric mean of the growth rates (geometric mean fitness), which is usually different from the simple arithmetic mean of growth rates. Evolutionary outcomes based on geometric mean fitness are often very different from the predictions based on the usual arithmetic mean fitness. In this paper we illustrate the concept of geometric mean fitness in a few simple models. We discuss its implications for the adaptive evolution of phenotypes, e.g. foraging under predation risks and clutch size. Next, we present an application: the risk‐spreading egg‐laying behaviour of the cabbage white butterfly, and develop a two‐patch population dynamic model to show how the optimal solution diverges from the ssual arithmetic mean approach. The dynamics of these stochastic models cannot be predicted from the dynamics of simple deterministic models. Thus the inclusion of stochastic factors in the analyses of populations is essential to the understanding of not only population dynamics, but also their evolutionary dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.