Abstract

BackgroundThe genome of invertebrates is rich in retroelements which are structurally reminiscent of the retroviruses of vertebrates. Those containing three open reading frames (ORFs), including an env-like gene, may well be considered as endogenous retroviruses. Further support to this similarity has been provided by the ability of the env-like gene of DmeGypV (the Gypsy endogenous retrovirus of Drosophila melanogaster) to promote infection of Drosophila cells by a pseudotyped vertebrate retrovirus vector.ResultsTo gain insights into their evolutionary story, a sample of thirteen insect endogenous retroviruses, which represents the largest sample analysed until now, was studied by computer-assisted comparison of the translated products of their gag, pol and env genes, as well as their LTR structural features. We found that the three phylogenetic trees based respectively on Gag, Pol and Env common motifs are congruent, which suggest a monophyletic origin for these elements.ConclusionsWe showed that most of the insect endogenous retroviruses belong to a major clade group which can be further divided into two main subgroups which also differ by the sequence of their primer binding sites (PBS). We propose to name IERV-K and IERV-S these two major subgroups of Insect Endogenous Retro Viruses (or Insect ERrantiVirus, according to the ICTV nomenclature) which respectively use Lys and Ser tRNAs to prime reverse transcription.

Highlights

  • The genome of invertebrates is rich in retroelements which are structurally reminiscent of the retroviruses of vertebrates

  • The sequences of thirteen insect endogenous retroviruses were included in this analysis, which represents the largest sample analysed until now

  • The primer binding sites (PBS) of insect endogenous retroviruses have unusual properties The insect endogenous retroviruses can be divided into two main groups: (DmeGypV DsuGypV DviGypV DmeNomV CcaYoyV) using a tRNALys and (Dme176V Dme297V DanTomV DmeZamV DmeTirV DmeIdeV DviTv1V TniTedV) using a tRNASer binding sites

Read more

Summary

Introduction

The genome of invertebrates is rich in retroelements which are structurally reminiscent of the retroviruses of vertebrates Those containing three open reading frames (ORFs), including an env-like gene, may well be considered as endogenous retroviruses. Retrovirus-like elements have been found in the genomes of most Eukaryotes Their integrated/proviral forms consist of two long terminal repeats (LTRs) flanking an internal region which contains one to three major open reading frames (ORFs) coding for structural and enzymatic functions necessary for their replication cycle. Based on a phylogeny of their reverse transcriptase (RT) domains, the retrovirus-like elements were divided into two major groups: the Ty1/Copia and the Ty3/Gypsy families [1] They differ by the order of enzymatic domains encoded in the pol gene: Integrase – Reverse.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.