Abstract
The transmission of many animal and plant diseases relies on the behavior of arthropod vectors. In particular, the specific preference for infected or uninfected hosts observed in many vector species is expected to affect the circulation of vector-borne diseases. Here I develop a theoretical framework to study the epidemiology and evolution of the manipulation of host choice behavior of vectors. I show that vector preference strategies have dramatic epidemiological consequences. I also explore the evolution of vector host choice under different scenarios regarding control of the vector behavior by the pathogen. This analysis yields multiple evolutionary outcomes and explains the diversity of host choice behaviors observed in a broad range of vector-borne diseases. In particular, this analysis helps us understand why several pathogens have evolved manipulation strategies that vary with the infectious status of their vector species while other pathogens seem unable to evolve such complex conditional strategies. I argue that contrasting the behavior of infected and uninfected vectors is key to revealing the mechanistic constraints acting on the evolution of the manipulation of vector behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.