Abstract

This paper presents new results concerning evolution and inflexional instability of twisted magnetic flux tubes in the solar corona. Inflexional configurations, attained when the curvature of the tube axis vanishes, are generally present in coronal magnetic structures and are invariably associated with the early stages of kink formation. New equations for the Lorentz force in orthogonal curvilinear coordinates are applied to study the behaviour of twisted flux tubes in presence of inflexion points. We find that inflexional flux tubes are in disequilibrium and evolve spontaneously to inflexion-free configurations, possibly in braid form. These results have important applications for solar coronal structures. First, they prove that the evolution and relaxation of twisted magnetic fields into braid form is a generic feature, confirming the observational evidence of highly twisted and braided structures present in the solar corona. Secondly, they demonstrate that inflexions can trigger kink instabilities, providing a fundamental mechanism for modeling outbreaks of energy into heat, emitted by flares, microflares and mass ejections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.