Abstract
To better understand the droplet impact on the liquid film with vapor bubbles in spray cooling, a two-dimensional symmetric numerical model is set up using the Coupled Level Set and Volume of Fluid method (CLSVOF). Three simulative cases are taken, considering the effects of film thickness and the presence of vapor bubbles or not. The main purposes of this paper are to investigate the evolution of vapor bubbles during droplet impact and to identify the effect of vapor bubbles on convection heat transfer. The results indicate that vapor bubbles will detach from the wall and break up at the surface of the liquid film during droplet impact, for a thinner film, later a “sawtooth” liquid film appears at the non-impact region. However, for a thicker film, no bubbles rupture and the detached bubbles will flow inside the liquid film and then some will merge into larger bubbles. In the presence of vapor bubbles, the crater radius is larger for a thicker liquid film. The presence of vapor bubbles will facilitate the subcooled droplet to spread to the heated wall, leading to a substantial increase in surface heat flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.