Abstract

BackgroundJute is considered one of the most important crops for fiber production and multipurpose usages. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a crucial enzyme involved in lignin biosynthesis in plants. The potential functions of CCoAOMT in lignin biosynthesis of jute have been reported in several studies. However, little is known about the evolution of the CCoAOMT gene family, and either their expression level at different developing stages in different jute cultivars, as well as under abiotic stresses including salt and drought stress.ResultsIn the present study, 66 CCoAOMT genes from 12 species including 12 and eight CCoAOMTs in Corchorus olitorius and C. capsularis were identified. Phylogenetic analysis revealed that CCoAOMTs could be divided into six groups, and gene expansion was observed in C. olitorius. Furthermore, gene expression analysis of developing jute fibers was conducted at different developmental stages (15, 30, 45, 60, and 90 days after sowing [DAS]) in six varieties (Jute-179 [J179], Lubinyuanguo [LB], and Qiongyueqing [QY] for C. capsularis; Funong No.5 [F5], Kuanyechangguo [KY], and Cvlv [CL] for C. olitorius). The results showed that CCoAOMT1 and CCoAOMT2 were the dominant genes in the CCoAOMT family. Of these two dominant CCoAOMTs, CCoAOMT2 showed a constitutive expression level during the entire growth stages, while CCoAOMT1 exhibited differential expression patterns. These two genes showed higher expression levels in C. olitorius than in C. capsularis. The correlation between lignin content and CCoAOMT gene expression levels indicated that this gene family influences the lignin content of jute. Using real-time quantitative reverse transcription PCR (qRT-PCR), a substantial up-regulation of CCoAOMTs was detected in stem tissues of jute 24 h after drought treatment, with an up to 17-fold increase in expression compared to that of untreated plants.ConclusionsThis study provides a basis for comprehensive genomic studies of the entire CCoAOMT gene family in C. capsularis and C. olitorius. Comparative genomics analysis among the CCoAOMT gene families of 12 species revealed the close evolutionary relationship among Corchorus, Theobroma cacao and Gossypium raimondii. This study also shows that CCoAOMTs are not only involved in lignin biosynthesis, but also are associated with the abiotic stress response in jute, and suggests the potential use of these lignin-related genes to genetically improve the fiber quality of jute.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call