Abstract

Weathering steels are widely used in civil engineering, architecture and contemporary art due to their mechanical properties, their enhanced resistance to atmospheric corrosion as well as their aesthetic properties. Artists and blacksmiths often apply chemical treatments to obtain the appealing colors of a patina in a shorter period of time. However, the development of an accelerated patina may have an effect on the final appearance and color of the surface. With the aim of evaluating differences in color and studying the evolution of the surface, eight accelerated patinas were made and exposed to the atmosphere for periods of time of up to 24 months and were compared to a natural patina. The characterization studies showed the presence of lepidocrocite on the surface. A close inspection of the X-ray diffraction patterns showed the displacement of the (020) lepidocrocite reflection and asymmetric broadening of selective lines of this phase that were associated to stacking and twins faults, respectively. These faults decrease with the exposure time and are related to a maximum at 630 nm in the reflectance spectrum and the stabilization of the b* coordinate (yellow color). The colors of the accelerated patinas differ from the natural patina at short exposure times. However, they tend to converge at longer exposure times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call