Abstract

PurposeIn order to determine the range of medium temperature zone of road asphalt, it is hoped that the evolution of viscoelastic characteristics of road asphalt under medium temperature state can be deeply explored.Design/methodology/approachIn this paper, the needle penetration test and temperature scanning test were designed for 90# and 70# bitumen as test materials, and the boundary of medium temperature zone of 90# and 70# bitumen was accurately determined by data analysis method. A mathematical model was established based on principal component analysis, and a comprehensive evaluation index was proposed to evaluate the evolution of temperature viscoelastic characteristics of road asphalt by means of standardization and rotational dimensionality reduction.FindingsThe test results show that the medium temperature zone of 90# asphalt is [−5 ± 1°C, 38 ± 1°C], and the medium temperature zone of 70# asphalt is [0 ± 1°C, 51 ± 1°C]. According to the viscoelastic response of road asphalt in the medium temperature zone, the medium temperature zone can be divided into three evolution stages: weak viscoelastic stage, viscoelastic equilibrium stage, strong viscoelastic weak stage. Analysis based on the intrinsic viscosity fillip target describing the various intrinsic viscoelastic index represents the viscoelastic properties of bitumen from different angles, and limitations inherent stick fillip for target put forward the integrated the inherent stick fillip mark information, as well as targeted and accurate evaluation of road asphalt temperature comprehensive evaluation indexes in the evolution of the viscoelastic properties of IM-T. Finally, the temperature data of asphalt pavement in several representative regions of China are compared with the determined medium temperature region, and it is proved that the research on the evolution of viscoelastic characteristics of asphalt pavement under the medium temperature condition has important practical significance.Originality/valueThe boundary of medium temperature zone of 90# and 70# base asphalt was determined, and the viscoelastic characteristic evolution of road asphalt under medium temperature state was studied deeply. Aiming at the limitation of intrinsic viscoelastic index, a comprehensive evaluation index IM-T which not only integrates the information of intrinsic viscoelastic index but also can accurately evaluate the evolution of temperature viscoelastic characteristics in road asphalt is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call