Abstract

Intercontinental disjunctions between tropical regions, which harbor two-thirds of the flowering plants, have drawn great interest from biologists and biogeographers. Most previous studies on these distribution patterns focused on woody plants, and paid little attention to herbs. The Orchidaceae is one of the largest families of angiosperms, with a herbaceous habit and a high species diversity in the Tropics. Here we investigate the evolutionary and biogeographical history of the slipper orchids, which represents a monophyletic subfamily (Cypripedioideae) of the orchid family and comprises five genera that are disjunctly distributed in tropical to temperate regions. A relatively well-resolved and highly supported phylogeny of slipper orchids was reconstructed based on sequence analyses of six maternally inherited chloroplast and two low-copy nuclear genes (LFY and ACO). We found that the genus Cypripedium with a wide distribution in the northern temperate and subtropical zones diverged first, followed by Selenipedium endemic to South America, and finally conduplicate-leaved genera in the Tropics. Mexipedium and Phragmipedium from the neotropics are most closely related, and form a clade sister to Paphiopedilum from tropical Asia. According to molecular clock estimates, the genus Selenipedium originated in Palaeocene, while the most recent common ancestor of conduplicate-leaved slipper orchids could be dated back to the Eocene. Ancestral area reconstruction indicates that vicariance is responsible for the disjunct distribution of conduplicate slipper orchids in palaeotropical and neotropical regions. Our study sheds some light on mechanisms underlying generic and species diversification in the orchid family and tropical disjunctions of herbaceous plant groups. In addition, we suggest that the biogeographical study should sample both regional endemics and their widespread relatives.

Highlights

  • Tropical regions harbor almost two-thirds of the flowering plants [1,2], where intercontinental disjunctions occur commonly within and among plant genera due to Gondwana breakup, immigration from the Laurasian tropics and transoceanic dispersal [3,4]

  • The PCR products of primers trnN/trnL had great length variation in slipper orchids, ranging from,1400 bp to,6000 bp, which, together with the amplification results of primers ndhFcF/ndhFaR, suggests that the ndhF gene has been completely lost in Mexipedium and the studied species of Phragmipedium

  • The matK pseudogene of Vanilla sp. was used in the phylogenetic analysis, since it only differs from the sequence of its congeneric species in several nucleotide substitutions and three nontriplet indels (5 bp insertion, 13 bp insertion, and 4 bp deletion)

Read more

Summary

Introduction

Tropical regions harbor almost two-thirds of the flowering plants [1,2], where intercontinental disjunctions occur commonly within and among plant genera due to Gondwana breakup, immigration from the Laurasian tropics and transoceanic dispersal [3,4]. On the other hand, owing to the occurrence of a series of climatic oscillations and geographic events in the past 65 Mya [12,13,23,24,25], plants experienced expansion and contraction of their ranges [26,27,28,29,30], and diversified to adapt to new niches [31,32,33,34,35] It may explain why Wing [36] detected a mixture of tropical and temperate elements in the Eocene floras of the Rocky Mountains. Lavin & Luckow [37] and Wen [38] proposed that the study of disjunctions in temperate groups should include their subtropical and tropical relatives, and vice versa

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call