Abstract

Changes in the amplitudes of evoked potentials in the visual cortex of conscious rabbits in response to substitution of flashing lines of different orientations (0-90 degrees ) but constant intensity were studied, along with interneurons of different intensities but constant orientation, and complex stimuli with simultaneous changes in flash orientation and intensity. Factor analysis of the results showed that analysis of the N85 peak of evoked potentials produced by substitution of stimuli with different orientations but constant intensity identified a two-dimensional sensory space for orientations. An achromatic sensory space was also detected using substitution of lines of different intensities but constant orientation. Substitution of complex stimuli involved two versions of the experiment. In the first version, four stimuli in the initial orientations (0-38.58 degrees ) had an intensity of 5 cd/m(2), the other stimuli (with orientations of 51.44-90 degrees ) were presented at an intensity of 15 cd/m(2). On the plane of the sensory space formed by the first two significant factors, stimuli with different intensities were located in different quadrants of the circle, while within the quadrants themselves, the stimuli were located in accord with their orientations, from lower values to greater. It is suggested that in this version, an interaction between orientation and intensity attributes was seen on the single plane of the sensory space, with a clear predominance of the intensity factor. The other experimental version also included eight complex stimuli, each complex having its own orientation (one of eight over the range 0-90 degrees ) and intensity (also one of eight, in the range 5-21 cd/m(2)). In all experiments involving substitution of complex stimuli, factor analysis identified three to four significant factors. In the vast majority of cases, only the sensory space plane X1, X2 was found, this being formed by two significant factors. On this plane, the stimuli were located in order of changes in intensity. This may be associated with the fact that rabbits are crepuscular animals, such that stimulus brightness is the most important attribute. However, in some cases, potentials in the rabbit brain also demonstrated simultaneous processing of two visual stimulus attributes, i.e., intensity and orientation. This may be evidence indicating analysis of complex stimuli in the primary visual cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call