Abstract

An evoked-potential audiogram was measured for an Indo-Pacific humpback dolphin (Sousa chinensis) living in the dolphinarium of Nanning Zoo, China. Rhythmic 20 ms pip trains composed of cosine-enveloped 0.25 ms tone pips at a pip rate of 1 kHz were presented as sound stimuli. The dolphin was trained to remain still at the water surface and to wear soft latex suction-cup EEG electrodes used to measure the animal's envelope-following evoked potentials to the sound stimuli. Responses to 1000 rhythmic 20 ms pip trains for each amplitude/frequency combination were averaged and analysed using a fast Fourier transform to obtain an evoked auditory response. The hearing threshold was defined as the zero crossing point of the response input-output function using linear regression. Fourteen frequencies ranging from 5.6 to 152 kHz were studied. The results showed that most of the thresholds were lower than 90 dB re. 1 μPa (r.m.s.), covering a frequency range from 11.2 to 128 kHz, and the lowest threshold of 47 dB was measured at 45 kHz. The audiogram, which is a function of hearing threshold versus stimulus carrier frequency, presented a U-shape with a region of high hearing sensitivity (within 20 dB of the lowest threshold) between approximately 20 and 120 kHz. At frequencies lower than this high-sensitivity region, thresholds increased at a rate of approximately 11 dB octave(-1) up to 93 dB at 5.6 kHz. The thresholds at high frequencies above 108 kHz increased steeply at a rate of 130 dB octave(-1) up to 127 dB at 152 kHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call