Abstract
Neural networks and their application in communication systems are receiving growing attention from both academia and industry. The authors note that there is a disconnect between the typical objective functions of these neural networks with regards to the context in which the neural network will eventually be deployed and evaluated. To this end, a new loss function is proposed and shown to increase the performance of neural networks when implemented in a communication system compared to previous methods. It is further shown that a ‘split complex’ approach used by many implementations can be improved via formalisation of the ‘concatenated complex’ approach described herein. Experimental results using the orthogonal frequency division multiplexing (OFDM) and spectrally efficient frequency division multiplexing (SEFDM) modulation formats with varying bandwidth compression factors over a wireless visible light communication (VLC) link validate the efficacy of the proposed method in a real system, achieving the lowest error vector magnitude (EVM), and thus bit error rate (BER), across all experiments, with a 5 dB to 10 dB improvement in the received symbols EVM overall compared to the baseline implementation, with bandwidth compressions down to 40% compared to OFDM, resulting in a spectral efficiency gain of 67%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.