Abstract

Prostatic inflammation plays a role in the progression of benign prostatic hyperplasia (BPH). Eviprostat is an antioxidant, antiinflammatory phytotherapeutic agent widely used to treat lower urinary tract symptoms in BPH. Because Eviprostat is a mixture of compounds from multiple natural sources, however, its mechanism of action has been difficult to investigate. Here, we describe the use of oligonucleotide microarrays to investigate changes in gene expression in the prostate of rats with surgically induced partial bladder-outlet obstruction and the effect of Eviprostat on those changes. Several dozen proinflammatory genes were activated in obstructed rats, including cytokine, arachidonic acid cascade enzyme, Toll-like receptor (TLR), and transcription factor genes, and their expression was suppressed by Eviprostat. Pathway analysis revealed that several proinflammatory pathways were activated, including cytokine and TLR signaling pathways. The differential expression of selected genes was verified by real-time reverse-transcriptase polymerase chain reaction. Our findings suggest that prostate inflammation in our rat model of partial bladder-outlet obstruction is related to the increased expression of nuclear factor κB (NF-κB) and the induction of proinflammatory cytokines, and that Eviprostat suppresses their expression at the transcriptional level. The prostate inflammation seen in BPH and the clinical benefits of Eviprostat may be similarly explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.