Abstract

Recent advances in deep learning have greatly improved the segmentation of mitochondria from Electron Microscopy (EM) images. However, suffering from variations in mitochondrial morphology, imaging conditions, and image noise, existing methods still exhibit high uncertainty in their predictions. Moreover, in view of our findings, predictions with high levels of uncertainty are often accompanied by inaccuracies such as ambiguous boundaries and amount of false positive segments. To deal with the above problems, we propose a novel approach for mitochondria segmentation in 3D EM images that leverages evidential uncertainty estimation, which for the first time integrates evidential uncertainty to enhance the performance of segmentation. To be more specific, our proposed method not only provides accurate segmentation results, but also estimates associated uncertainty. Then, the estimated uncertainty is used to help improve the segmentation performance by an uncertainty rectification module, which leverages uncertainty maps and multi-scale information to refine the segmentation. Extensive experiments conducted on four challenging benchmarks demonstrate the superiority of our proposed method over existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.