Abstract
This work introduces a new complete Simultaneous Localization and Mapping (SLAM) framework that uses an enriched representation of the world based on sensor fusion and is able to simultaneously provide an accurate localization of the vehicle. A method to create an Evidential grid representation from two very different sensors, laser scanner and stereo camera, allows a better handling of the dynamic aspects of the urban environment and a proper management of errors to create a more reliable map, thus having a more precise localization. A life-long layer with high level states is presented, it maintains a global map of the entire vehicle’s trajectory and distinguishes between static and dynamic obstacles. Finally, we propose a method that at each current map creation estimates the vehicle’s position by a grid matching algorithm based on image registration techniques. Results on a real road dataset show that the environment mapping data can be improved by adding relevant information that could be missed without the proposed approach. Moreover, the proposed localization method is able to reduce the drift and improve the localization compared to other methods using similar configurations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.